Week of Aug 12th

Montag Dienstag Mittwoch Donnerstag Freitag Samstag Sonntag
12 August 2024
13 August 2024
14 August 2024
15 August 2024
16 August 2024(1 Veranstaltung)

Talk by Prof. Galit Shmueli (National Tsing Hua University) - How to "Improve" Prediction Using Behavior Modification

16.08.24, 14:30 Uhr

München • relAI
Many internet platforms that collect behavioral big data use it to predict user behavior for internal purposes and for their business customers (e.g., advertisers, insurers, security forces, governments, political consulting firms) who utilize the predictions for personalization, targeting, and other decision-making. Improving predictive accuracy is therefore extremely valuable. Data science researchers design algorithms, models, and approaches to improve prediction. Prediction is also improved with larger and richer data. Beyond improving algorithms and data, platforms can stealthily achieve better prediction accuracy by "pushing" users' behaviors towards their predicted values, using behavior modification techniques, thereby demonstrating more certain predictions. Such apparent "improved" prediction can unintentionally result from employing reinforcement learning algorithms that combine prediction and behavior modification. This strategy is absent from the machine learning and statistics literature. Investigating its properties requires integrating causal with predictive notation. To this end, we incorporate Pearl's causal do(.) operator into the predictive vocabulary. We then decompose the expected prediction error given behavior modification, and identify the components impacting predictive power. Our derivation elucidates implications of such behavior modification to data scientists, platforms, their customers, and the humans whose behavior is manipulated. Behavior modification can make users' behavior more predictable and even more homogeneous; yet this apparent predictability might not generalize when customers use predictions in practice. Outcomes pushed towards their predictions can be at odds with customers' intentions, and harmful to manipulated users.
17 August 2024
18 August 2024

Legende

Messe

Seminar

Konferenz

Hackathon

Workshop

Netzwerktreffen

Sonstige

Munich AI Lectures

International renommierte Wissenschaftlerinnen und Wissenschaftler berichten über ihre aktuelle Forschung.

Am 28. November gibt Bayerns Wirtschaftsminister Hubert Aiwanger den Startschuss für die neue Unterstützungsplattform für den Mittelstand. Erfahren Sie mehr zum Thema KI und nutzen Sie die Technologie für Ihr Unternehmen!
Robotik-Experte Sebastian Scherer betont die Bedeutung von Backup-Lösungen für autonome Systeme. Durch Redundanz und maschinelles Lernen werden Herausforderungen wie Sensorausfälle und komplexe Entscheidungen gemeistert.
Gestern hielt der renommierte Computer-Vision-Forscher von der UC Berkeley Alexei Efros im Plenarsaal der Bayerischen Akademie der Wissenschaften eine Munich AI Lecture zum Thema „We are (still!) not giving data enough credit“.
Munich AI Lectures Serie: Neu denken, wie Maschinen arbeiten – MIT-Professorin Daniela Rus stellt ihren Forschungsansatz der „Liquid Neural Networks“ vor.
Im Rahmen der Munich AI Lectures sprach Ludovic Righetti, Professor der NYU, über die Integration von Model-Predictive Control (MPC) und Reinforcement Learning (RL) in der Robotik.