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This article deals with the IT security of connectionist artificial intelligence (AI) applications,

focusing on threats to integrity, one of the three IT security goals. Such threats are

for instance most relevant in prominent AI computer vision applications. In order to

present a holistic view on the IT security goal integrity, many additional aspects, such as

interpretability, robustness and documentation are taken into account. A comprehensive

list of threats and possible mitigations is presented by reviewing the state-of-the-art

literature. AI-specific vulnerabilities, such as adversarial attacks and poisoning attacks are

discussed in detail, together with key factors underlying them. Additionally and in contrast

to former reviews, the whole AI life cycle is analyzed with respect to vulnerabilities,

including the planning, data acquisition, training, evaluation and operation phases. The

discussion of mitigations is likewise not restricted to the level of the AI system itself

but rather advocates viewing AI systems in the context of their life cycles and their

embeddings in larger IT infrastructures and hardware devices. Based on this and the

observation that adaptive attackers may circumvent any single published AI-specific

defense to date, the article concludes that single protective measures are not sufficient

but rather multiple measures on different levels have to be combined to achieve a

minimum level of IT security for AI applications.

Keywords: artificial intelligence, neural network, IT security, interpretability, certification, adversarial attack,

poisoning attack

1. INTRODUCTION

This article is concerned with the IT security aspects of artificial intelligence (AI) applications1,
namely their vulnerabilities and possible defenses. As any IT component, AI systems may not
work as intended or may be targeted by attackers. Care must hence be taken to guarantee an
appropriately high level of safety and security. This applies in particular whenever AI systems
are used in applications where certain failures may have far-reaching and potentially disastrous
impacts including the death of people. Examples commonly cited include computer vision tasks
from biometric identification and authentication as well as driving on-road vehicles at higher levels
of autonomy (ORAD Committee, 2018). Since the core problem of guaranteeing a secure and safe
operation of AI systems lies at the intersection of the areas of AI and IT security, this article targets
readers from both communities.

1AI is here defined as the capability of a machine to either autonomously take decisions or to support humans in making
decisions. In order to distinguish AI from trivial functions, such as, for instance, a sensor that directly triggers an action using
a threshold function, one might narrow the definition to non-trivial functions but since this term is not clearly defined, we
refrain from doing so.
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FIGURE 1 | Contrasting the development of (A) symbolic AI (sAI) and (B) connectionist AI (cAI) systems. Whereas sAI systems are directly designed by a human

developer and are straightforward to interpret, cAI systems are trained by means of machine learning (ML) algorithms using large data sets (this figure shows

supervised learning using a labeled data set). Due to their indirect design and their distributed decision-making, cAI systems are very hard to interpret.

1.1. Symbolic vs. Connectionist AI
AI systems are traditionally divided into two categories: symbolic
AI (sAI) and non-symbolic (or connectionist) AI (cAI) systems.
sAI has been a subject of research for many decades, starting
from the 1960s (Lederberg, 1987). In sAI, problems are directly
encoded in a human-readable model and the resulting sAI system
is expected to take decisions based on this model. Examples
of sAI include rule-based systems using decision trees (expert
systems), planning systems and constraint solvers. In contrast,
cAI systems consist of massively parallel interconnected systems
of simple processing elements, similar in spirit to biological
brains. cAI includes all variants of neural networks, such as
deep neural networks (DNNs), convolutional neural networks
(CNNs) and radial basis function networks (RBFNs) as well as
support-vector machines (SVMs). Operational cAI models are
created indirectly using training data and machine learning and
are usually not human-readable. The basic ideas for cAI systems
date back to as early as 1943 (McCulloch and Pitts, 1943). After
a prolonged stagnation in the 1970s, cAI systems slowly started
to gain traction again in the 1980s (Haykin, 1999). In recent
years, starting from about 2009, due to significant improvements
in processing power and the amount of example data available,
the performance of cAI systems has tremendously improved. In
many areas, cAI systems nowadays outperform sAI systems and
even humans. For this reason, they are used inmany applications,

and new proposals for using them seem to be made on a daily
basis. Besides pure cAI and sAI systems, hybrid systems exist.
In this article, sAI is considered a traditional IT system and the
focus is on cAI systems, especially due to their qualitatively new
vulnerabilities that in turn require qualitatively new evaluation
and defense methods. Unless otherwise noted, the terms AI and
cAI will from now on be used interchangeably.

1.2. Life Cycle of AI Systems
In contrast to sAI and traditional IT systems, cAI systems
are not directly constructed by a human programmer (cf.
Figure 1). Instead, a developer determines the necessary
boundary conditions, i.e., required performance2, an untrained
AI system, training data and a machine learning (ML) algorithm,
and then starts a ML session, during which aML algorithm trains
the untrained AI system using the training data. This ML session
consists of alternating training and validation phases (not shown
in Figure 1) and is repeated until the required performance of the
AI system is achieved. If the desired performance is not reached
within a predefined number of iterations or if performance ceases
to increase beforehand, the training session is canceled and a new
one is started. Depending on the ML policy, the training session

2In contrast to narrowing the term performance to cover only accuracy, we use it
in a broader sense, cf. subsection 2.1 for details.
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FIGURE 2 | Besides the three core properties confidentiality, integrity, and availability, a holistic view on the IT security of AI applications involves many additional

aspects. This paper focuses on data and model integrity and important related aspects, especially robustness, interpretability and documentation, here depicted in

the center and encircled with a red line. Note that due to a lack of common definitions and concepts across disciplines, this figure is neither complete nor are the

terms used unambiguous.

is initialized anew using randomized starting conditions or the
boundary conditions are manually adjusted by the developer.
Once the desired performance is achieved, it is validated using
the test data set, which must be independent from the training
data set. Training can be performed in the setting of supervised
learning, where the input data contain preassigned labels, which
specify the correct corresponding output (as shown in Figure 1),
or unsupervised learning, where no labels are given and the
AI system learns some representation of the data, for instance
by clustering similar data points. While this article takes the
perspective of supervised learning, most of its results also apply
to the setting of unsupervised learning. After successful training,
the AI system can be used on new, i.e., previously unknown, input
data to make predictions, which is called inference.

Due to this development process, cAI systems may often
involve life cycles with complex supply chains of data, pre-trained
systems and ML frameworks, all of which potentially impact
security and, therefore, also safety. It is well-known that cAI
systems exhibit vulnerabilities which are different in quality from
those affecting classical software. One prominent instance are so-
called adversarial examples, i.e., input data which are specially
crafted for fooling the AI system (cf. subsection 2.5). This new
vulnerability is aggravated by the fact that cAI systems are inmost
practical cases inherently difficult to interpret and evaluate (cf.
subsection 3.2). Even if the system resulting from the training
process yields good performance, it is usually not possible for
a human to understand the reasons for the predictions the
system provides. In combination with the complex life cycle
as presented in section 2 this is highly problematic, since it
implies that it is not possible to be entirely sure about the correct
operation of the AI system even under normal circumstances,
let alone in the presence of attacks. This is in analogy to
human perception, memory and decision-making, which are
error-prone, may be manipulated (Eagleman, 2001; Loftus, 2005;
Wood et al., 2013, cf. also Figure 6) and are often hard to predict
by other humans (Sun et al., 2018). As with human decision-
making, a formal verification of cAI systems is at least extremely
difficult, and user adoption of cAI systems may be hampered by a
lack of trust.

1.3. IT Security Perspective on AI Systems
In order to assess a system from the perspective of IT security, the
three main security goals3 are used, which may all be targeted by
attackers (Papernot et al., 2016d; Biggio and Roli, 2018):

1. Confidentiality, the protection of data against unauthorized
access. A successful attack may for instance uncover training
data in medical AI prognostics.

2. Availability, the guarantee that IT services or data can always
be used as intended. A successful attack may for instance
make AI-based spam filters block legitimate messages, thus
hampering their normal operation.

3. Integrity, the guarantee that data are complete and correct
and have not been tampered with. A successful attack may for
instance make AI systems produce specific wrong outputs.

This article focuses on integrity, cf. Figure 2, since this is the
most relevant threat in the computer vision applications cited
above, which motivate our interest in the topic. Confidentiality
and availability are thus largely out of scope. Nevertheless, further
research in their direction is likewise required, since in other
applications attacks on these security goals may also have far-
reaching consequences, as can be seen by the short examples
mentioned above.

Besides the three security goals, an AI system has to be
assessed in terms of many additional aspects, cf. Figure 2. While
this paper is focused on the integrity of the AI model and the
data used, it also touches important related aspects, such as
robustness, interpretability, and documentation.

1.4. Related Work
Although the broader AI community remains largely unaware
of the security issues involved in the use of AI systems, this
topic has been studied by experts for many years now. Seminal
works, motivated by real-world incidents, were concerned

3We note that the concepts covered by the terms availability and integrity differ
to some extent from the ones they usually denote. Indeed, prevalent attacks on
availability are the result of a large-scale violation of integrity of the system’s output
data. However, this usage has widely been adopted in the research area.
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with attacks and defenses for simple classifiers, notably for
spam detection (Dalvi et al., 2004; Lowd and Meek, 2005;
Barreno et al., 2006; Biggio et al., 2013). The field witnessed
a sharp increase in popularity following the first publications
on adversarial examples for deep neural networks (Szegedy
et al., 2014; Goodfellow et al., 2015, cf. subsection 2.5). Since
then, adversarial examples and data poisoning attacks (where an
attacker manipulates the training data, cf. subsubsection 2.2.2)
have been the focus of numerous publications. Several survey
articles (Papernot et al., 2016d; Biggio and Roli, 2018; Liu Q.
et al., 2018; Xu et al., 2020) provide a comprehensive overview
of attacks and defenses on the AI level.

Research on verifying and proving the correct operation of AI
systems has also been done, although it is much scarcer (Huang
et al., 2017; Katz et al., 2017; Gehr et al., 2018; Singh et al.,
2019). One approach to this problem is provided by the area of
explainable AI (XAI, cf. subsection 4.3), which seeks to make
decisions taken by an AI system comprehensible to humans and
thus to mitigate an essential shortcoming of cAI systems.

Whereas previous survey articles like the ones cited above
focus on attacks and immediate countermeasures on the level
of the AI system itself, our publication takes into account the
whole life cycle of an AI system (cf. section 2), including data
and model supply chains, and the fact that the AI system is just
part of a larger IT system. On the one hand, for doing so, we draw
up a more complete list of attacks which might ultimately affect
the AI system. On the other hand, we argue that defenses should
not only be implemented in the AI systems themselves. Instead,
more general technical and organizational measures must also
be considered (as briefly noted in Gilmer et al., 2018) and in
particular new AI-specific defenses have to be combined with
classical IT security measures.

1.5. Outline
The outline of the paper is as follows: First, we inspect the
life cycle of cAI systems in detail in section 2, identifying and
analyzing vulnerabilities. AI-specific vulnerabilities are further
analyzed in section 3 in order to give some intuition about
the key factors underlying them which are not already familiar
from other IT systems. Subsequently, section 4 sets out to
present mitigations to the threats identified in section 2, focusing
not only on the level of the AI system itself but taking a

comprehensive approach. We conclude in section 5, where we
touch on future developments and the crucial aspect of verifying
correct operation of an AI system.

2. GENERALIZED AI LIFE CYCLE

In this section, we perform a detailed walk through the
life cycle of cAI systems (cf. Figure 3), mostly adopting the
point of view of functionality or IT security. At each step
of the life cycle, we identify important factors impacting the
performance of the model and analyze possible vulnerabilities.
Since our objective is to provide a comprehensive overview, we
discuss both classical vulnerabilities well-known from traditional
IT systems as well as qualitatively new attacks which are
specific to AI systems. Whereas classical vulnerabilities should
be addressed using existing evaluation and defense methods,
AI-specific attacks additionally require novel countermeasures,
which are discussed in this section to some extent, but mostly in
section 4.

The life cycle we consider for our analysis is that of a
generalized AI application. This approach is useful in order
to get the whole picture at a suitable level of abstraction. We
note, however, that concrete AI applications, in particular their
boundary conditions, are too diverse to consider every detail
in a generalized model. For instance, AI systems can be used
for making predictions from structured and tabular data, for
computer vision tasks and for speech recognition but also for
automatic translation or for finding optimal strategies under a
certain set of rules (e.g., chess, go). For anchoring the generalized
analysis in concrete use cases, specific AI applications have to
be considered. It may hence be necessary to adapt the general
analysis to the concrete setting in question or at least to the
broader application class it belongs to. In the following, we
use the example of traffic sign recognition several times for
illustrating our abstract analysis.

2.1. Planning
The first step that is required in the development of an
operational AI system is a thorough problem statement
answering the question which task has to be solved under which
boundary conditions. Initially, the expected inputs to the system
as well as their distribution and specific corner cases are defined

A B

FIGURE 3 | The development of cAI applications may be broken down into phases. (A) In reality, the development process is non-sequential, often relies on intuition

and experience and involves many feedback loops on different levels. The developer tries to find the quickest route to an operational AI system with the desired

properties. (B) For a simplified presentation, sequential phases are depicted. Here prominent functional components are shown for each phase. Besides this

functional perspective, the phases may be considered in terms of robustness, data protection, user acceptance or other aspects.
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and the required performance of the system with respect to these
inputs is estimated, including:

• The accuracy, or some other appropriate metric to assess the
correctness of results of the system,

• The robustness, e.g., with respect to inputs from a data
distribution not seen during training, or against maliciously
crafted inputs,

• The restrictions on computing resources (e.g., the system
should be able to run on a smartphone) and

• The runtime, i.e., combined execution time and latency.

Next, it might be helpful to analyze if the problem at hand can be
broken down into smaller sub-tasks which could each be solved
on their own. One may hope that the resulting modules are
less complex compared to a monolithic end-to-end system and,
therefore, are better accessible for interpretation and monitoring.
Once the problem and the operational boundary conditions have
been clearly defined, the state of the art of available solutions
to related problems is assessed. Subsequently, one or several
model classes andML algorithms [e.g., back-propagation of error
(Werbos, 1982)] for training the models are chosen which are
assumed to be capable of solving the given task. In case a model
class based on neural networks is chosen, a pre-trained network
might be selected as a base model. Such a network has been
trained beforehand on a possibly different task with a large data
set [e.g., ImageNet (Stanford Vision Lab, 2016)] and is used as
a starting point in order to train the model for solving the task
at hand using transfer learning. Such pre-trained networks [e.g.,
BERT (Devlin et al., 2019) in the context of natural language
processing] can pose a security threat to the AI system if they are
modified or trained in a malicious way as described in sections
2.2, 2.3.

Based on the choices made before, the required resources in
terms of quantity and quality (personnel, data set, computing
resources, hardware, test facilities, etc.) are defined. This
includes resources required for threat mitigation (cf. section 4).
Appropriate preparations for this purpose are put into effect. This
applies in particular to the documentation and cryptographic
protection of intermediate data, which affects all phases up
until operation.

In order to implement the model and the ML algorithm,
software frameworks [e.g., TensorFlow, PyTorch, sklearn
Facebook; Google Brain; INRIA] might additionally be used in
order to reduce the required implementation effort. This adds an
additional risk in the form of possible bugs or backdoors which
might be contained in the frameworks used.

2.2. Data Acquisition and Pre-processing
After fixing the boundary conditions, appropriate data for
training and testing the model need to be collected and pre-
processed in a suitable way. To increase the size of the
effective data set without increasing the resource demands,
the data set may be augmented by both transformations of
the data at hand and synthetic generation of suitable data.
The acquisition can start from scratch or rely on an existing
data set. In terms of efficiency and cost, the latter approach
is likely to perform better. However, it also poses additional

risks in terms of IT security, which need to be assessed
and mitigated.

Several properties of the data can influence the performance
of the model under normal and adverse circumstances. Using
a sufficient quantity of data of good quality is key to ensuring
the model’s accuracy and its ability to generalize to inputs not
seen during training. Important features related to the quality
of data are, in a positive way, the correctness of their labels (in
the setting of supervised learning) and, in a negative way, the
existence of a bias. If the proportion of wrongly labeled data
(also called noisy data) in the total data set is overly large, this
can cripple the model’s performance. If the training data contain
a bias, i.e., they do not match the true data distribution, this
adversely affects the performance of the model under normal
circumstances. In special cases it might be necessary though to
use a modified data distribution in the training data to adequately
consider specific corner cases. Furthermore, onemust ensure that
the test set is independent from the training set in order to obtain
reliable information on the model’s performance. To trace back
any problems that arise during training and operation, a sufficient
documentation of the data acquisition and pre-processing phase
is mandatory.

2.2.1. Collecting Data From Scratch
A developer choosing to build up his own data set has more
control over the process, which can make attacks much more
difficult. A fundamental question is whether the environment
from which the data are acquired is itself controlled by the
developer or not. For instance, if publicly available data are
incorporated into the data set, the possibility of an attacker
tampering with the data in a targeted way may be very
small, but the extraction and transmission of the data must
be protected using traditional measures of IT security. These
should also be used to prevent subsequent manipulations in
case an attacker gets access to the developer’s environment.
In addition, the data labeling process must be checked to
avoid attacks. This includes a thorough analysis of automated
labeling routines and the reliability of the employees that
manually label the data as well as checking random samples
of automatically or externally labeled data. Moreover, when
building up the data set, care must be taken that it does not
contain a bias.

2.2.2. Using Existing Data
If an existing data set is to be used, the possibilities for attacks are
diverse. If the developer chooses to acquire the data set from a
trusted source, the integrity and authenticity of the data must be
secured to prevent tampering during transmission. This can be
done using cryptographic schemes.

Even if the source is deemed trustworthy, it is impossible to be
sure that the data set is actually correct and has not fallen prey to
attacks beforehand. In addition, the data set may be biased, and a
benign but prevalent issue may be data that were unintentionally
assigned wrong labels [noise in the data set may be as high as
30% (Veit et al., 2017; Wang et al., 2018)]. The main problem in
terms of IT security are so-called poisoning attacks though. In
a poisoning attack, the attacker manipulates the training set in
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order to influence the model trained on this data set. Such attacks
can be divided into two categories:

1. Attacks on availability: The attacker aims to maximize the
generalization error of the model (Biggio et al., 2012; Xiao
et al., 2014; Mei and Zhu, 2015) by poisoning the training
set. This attack can be detected in the testing phase since it
decreases the model’s accuracy. A more focused attack might
try to degrade the accuracy only on a subset of data. For
instance, images of stop signs could be targeted in traffic sign
recognition. Such an attack would only affect a small fraction
of the test set and thus be more difficult to detect. The metrics
used for testing should hence be selected with care.

2. Attacks on integrity: The attacker aims to introduce a
backdoor into the model without affecting its overall accuracy
(Chen et al., 2017; Turner et al., 2019; Saha et al., 2020) (cf.
Figure 4), which makes it very hard to detect. The attack
consists in injecting a special trigger pattern into the data
and assigning it to a target output. A network trained on
these data will produce the target output when processing
data samples containing the trigger. Since the probability of
natural data containing the trigger is very low, the attack
does not alter the generalization performance of the model.
In classification tasks, the trigger is associated with a target
class. For instance, in biometric authentication the trigger may
consist in placing a special pair of sunglasses upon the eyes
in images of faces. The model would then classify persons
wearing these sunglasses as the target class.

2.3. Training
In this phase, the model is trained using the training data set
and subject to the boundary conditions fixed before. To this end,
several hyperparameters (number of repetitions, stop criteria,
learning rate etc.) have to be set either automatically by the
ML algorithm or manually by the developer, and the data set
has to be partitioned into training and test data in a suitable
way. Attacks in this phase may be mounted by attackers getting

access to the training procedure, especially if training is not
done locally, but using an external source, e.g., in the cloud (Gu
et al., 2017). Possible threats include augmenting the training
data set with poisoned data to sabotage training, changing the
hyperparameters of the training algorithm or directly changing
the model’s parameters (weights and biases). Furthermore, an
attacker may manipulate already trained models. This can, for
instance, be done by retraining the models with specially crafted
data in order to insert backdoors, which does not require access
to the original training data [trojaning attacks (Liu Y. et al.,
2018; Ji et al., 2019)]. A common feature of these attacks is
that they assume a rather powerful attacker having full access
to the developer’s IT infrastructure. They can be mitigated using
measures from traditional IT security for protecting the IT
environment. Particular countermeasures include, on the one
hand, integrity protection schemes for preventing unwarranted
tampering with intermediate results as well as comprehensive
logging and documentation of the training process. On the other
hand, the reliability of staff must be checked to avoid direct
attacks by or indirect attacks via the developers.

2.4. Testing and Evaluation
After training, the performance of the model is tested using the
validation data set and the metrics fixed in the planning phase.
If it is below the desired level, training needs to be restarted and,
if necessary, the boundary conditions need to be modified. This
iterative process needs to be repeated until the desired level of
performance is attained (cf. Figures 1B, 3A). In order to check
the performance of the model, the process of evaluation needs to
be repeated after every iteration of training, every time that the
model goes into operation as part of a more complex IT system,
and every time that side conditions change.

After finishing the training and validation phase, the test set is
used for measuring the model’s final performance. It is important
that using the test set only yields heuristic guarantees on the
generalization performance of the model, but does not give any

FIGURE 4 | A so-called poisoning or backdooring attack may be mounted by an attacker if he gets the chance to inject one or more manipulated data items into the

training set: the manipulated data lead to undesired results but the usual training and test data still produce the desired results, making it extremely hard to detect

backdoors in neural networks. In this example, a stop sign with a yellow post-it on top is interpreted as a speed limit 100 sign, whereas speed limit 100 and stop signs

are interpreted as expected.
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formal statements on the correctness or robustness of the model,
nor does it allow understanding the decisions taken by the model
if the structure of the model does not easily lend itself to human
interpretation (black-box model). In particular, the model may
perform well on the test set by having learnt only spurious
correlations in the training data. Care must hence be taken when
constructing the test set. A supplementary approach to pure
performance testing is to use XAI methods (cf. subsection 4.3),
which have often been used to expose problems which had gone
unnoticed in extensive testing (Lapuschkin et al., 2019).

2.5. Operation
A model that has successfully completed testing and evaluation
may go into operation. Usually, the model is part of a more
complex IT system, and mutual dependencies between the model
and other components may exist. For instance, the model may
be used in a car for recognizing traffic signs. In this case, it
receives input from sensors within the same IT system, and
its output may in turn be used for controlling actuators. The
embedded model is tested once before practical deployment or
continuously via a monitoring process. If necessary, one can
adjust its embedding or even start a new training process using
modified boundary conditions and iterate this process until
achieving the desired performance.

Classical attacks can target the system at different levels and
impact the input or output of the AI model without affecting
its internal operation. Attacks may be mounted on the hardware
(Clements and Lao, 2018) and operating system level or concern
other software executed besides the model. Such attacks are
not specific to AI models and are thus not in the focus of
this publication. They need to be mitigated using classical
countermeasures for achieving a sufficient degree of IT security.
Due to the black-box property of AI systems, however, these
attacks can be harder to detect than in a classical setting.

A qualitatively new type of attacks, called evasion attacks,
focuses on AI systems (cf. Figure 5). Evasion attacks have been
well-known in adversarial ML for years (Biggio and Roli, 2018).
In the context of deep learning, these attacks are called adversarial
attacks. Adversarial attacks target the inference phase of a trained
model and perturb the input data in order to change the output
of the model in a desired way (Szegedy et al., 2014; Goodfellow
et al., 2015). Depending on the attacker’s knowledge, adversarial
attacks can be mounted in a white-box or gray-box setting:

1. In white-box attacks, the attacker has complete information
about the system, including precise knowledge of defense
mechanisms designed to thwart attacks. In most cases, the
attacker computes the perturbation using the gradient of the
targetedmodel. The Fast Gradient SignMethod of Goodfellow
et al. (2015) is an early example, which was later enhanced
by stronger attacks designed to create the perturbation in an
iterative manner (Papernot et al., 2016c; Carlini and Wagner,
2017c; Chen et al., 2018, 2020; Madry et al., 2018).

2. In gray-box attacks, the attacker does not have access to
the internals of the model and might not even know the
exact training set, although some general intuition about the
design of the system and the type of training data needs to
be present, as pointed out by Biggio and Roli (2018). In this
case, the attacker trains a so-called surrogate model using data
whose distribution is similar to the original training data and,
if applicable, queries to the model under attack (Papernot
et al., 2016b). If the training was successful, the surrogate
model approximates the victim model sufficiently well to
proceed to the next step. The attacker then creates an attack
based on the surrogate model, which is likely to still perform
well when applied to the targeted model, even if the model
classes differ. This property of adversarial examples, which is
very beneficial for attackers, has been termed transferability
(Papernot et al., 2016a).

FIGURE 5 | Adversarial attacks may be conducted without white-box access to the victim model: First, a surrogate model is trained using a surrogate data set.

Labels for this data set might optionally be obtained via queries to the victim model. Subsequently, the trained surrogate model is used to generate adversarial input

examples. In many cases, these adversarial examples may then be used successfully for attacking the victim model.
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Adversarial attacks usually choose the resulting data points to
be close to the original ones in some metric, e.g., the Euclidean
distance. This can make them indistinguishable from the original
data points for human perception and thus impossible to detect
by a human observer. However, some researchers have raised
the question whether this restriction is really necessary and
have argued that in many applications it may not be (Gilmer
et al., 2018; Yakura et al., 2020). This applies in particular to
applications where human inspection of data is highly unlikely
and even blatant perturbations might well go unnoticed, as e.g.,
in the analysis of network traffic.

In most academic publications, creating and deploying
adversarial attacks is a completely digital procedure. For situated
systems acting in the sensory-motor loop, such as autonomous
cars, this approach may serve as a starting point for investigating
adversarial attacks but generally misses out on crucial aspects of
physical instantiations of these attacks: First, it is impossible to
foresee and correctly simulate all possible boundary conditions
as e.g., viewing angles, sensor pollution and temperature. Second,
sufficiently realistic simulations of the interaction effects between
system modules and environment are hard to carry out. Third,
this likewise applies to simulating individual characteristics
of hardware components that influence the behavior of these
components. This means the required effort for generating
physical adversarial attacks that perform well is much larger as
compared to their digital copies. For this reason, such attacks
are less well-studied, but several publications have shown they
can still work, in particular if attacks are optimized for high
robustness to typically occurring transformations (e.g., rotation
and translation in images) (Sharif et al., 2016; Brown et al., 2017;
Evtimov et al., 2017; Eykholt et al., 2017; Athalye et al., 2018b;
Song et al., 2018).

3. KEY FACTORS UNDERLYING
AI-SPECIFIC VULNERABILITIES

As described in section 2, AI systems can be attacked on
different levels. Whereas many of the vulnerabilities are just
variants of more general problems in IT security, which
affect not only AI systems, but also other IT solutions, two
types of attacks are specific to AI, i.e., poisoning attacks and
adversarial examples (also known as evasion attacks). This
section aims to give a general intuition of the fundamental
properties specific to AI which enable and facilitate these
attacks, and to outline some general strategies for coping
with them.

3.1. Huge Input and State Spaces and
Approximate Decision Boundaries
Complex AI models contain many millions of parameters
(weights and biases), which are updated during training in order
to approximate a function for solving the problem at hand. As
a result, the number of possible combinations of parameters is
enormous and decision boundaries between input data where the
models’ outputs differ can only be approximate (Hornik et al.,
1989; Blackmore et al., 2006; Montúfar et al., 2014) (cf. Table 1).

TABLE 1 | The size of the input and state spaces of commonly used architectures

in the field of object recognition (LeNet-5, VGG-16, ResNet-152) and natural

language processing (BERT) is extremely large.

Model Number

of distinct

possible

inputs

Input size

(in bit)

Output

size (in

bit)

Number

of

parameters

Number

of layers

LeNet-5 (LeCun

et al., 1998)

26272 28 · 28 · 8

= 6272

10 · 32 ≈ 60K 7

VGG-16

(Simonyan and

Zisserman, 2015)

21204224 224 · 224 · 3 · 8

= 1204224

1000 · 32 ≈ 135M 16

ResNet-152 (He

et al., 2016)

21204224 224 · 224 · 3 · 8

= 1204224

1000 · 32 ≈ 60M 152

BERT (Devlin

et al., 2019)

≤ 27680 ≤ 512 · 15

= 7680

≤ 512 ·

1000 · 32

≈ 345M 24

Besides, due to the models’ non-linearity small perturbations
in input values may result in huge differences in the output
(Pasemann, 2002; Goodfellow et al., 2015; Li, 2018).

In general, AImodels are trained on the natural distribution of
the data considered in the specific problem (e.g., the distribution
of traffic sign images). This distribution, however, lies on a very
low-dimensional manifold as compared to the complete input
space (e.g., all possible images of the same resolution) (Tanay
and Griffin, 2016; Balda et al., 2020), which is sometimes referred
to as the “curse of dimensionality.” Table 1 shows that the size
of the input space for some common tasks is extremely large.
Even rather simple and academic AI models as e.g., LeNet-
5 for handwritten digit recognition have a huge input space.
As a consequence, most possible inputs are never considered
during training.

On the one hand, this creates a safety risk if the model is
exposed to benign inputs which sufficiently differ from those seen
during training, such that the model is unable to generalize to
these new inputs (Novak et al., 2018; Jakubovitz et al., 2019). The
probability of this happening depends onmany factors, including
the model, the algorithm used and especially the quality of the
training data (Chung et al., 2018; Zahavy et al., 2018).

On the other hand, what is much more worrying, inputs
which reliably cause malfunctioning for a model under attack,
i.e., adversarial examples, can be computed efficiently and in a
targeted way (Athalye et al., 2018b; Yousefzadeh and O’Leary,
2019; Chen et al., 2020). Although much work has been invested
in designing defenses since adversarial examples first surfaced in
deep learning, as of now, no general defense method is known
which can reliably withstand adaptive attackers (Carlini and
Wagner, 2017a; Athalye et al., 2018a). That is, defenses may work
if information about their mode of operation is kept secret from
an attacker (Song et al., 2019). As soon as an attacker gains this
information, which should in most cases be considered possible
following Kerckhoffs’s principle, he is able to overcome them.

Besides the arms race in practical attacks and defenses,
adversarial attacks have also sparked interest from a theoretical
perspective (Goodfellow et al., 2015; Tanay and Griffin, 2016;
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Biggio and Roli, 2018; Khoury and Hadfield-Menell, 2018;
Madry et al., 2018; Ilyas et al., 2019; Balda et al., 2020).
Several publications deal with their essential characteristics. As
pointed out by Biggio and Roli (2018), adversarial examples
commonly lie in areas of negligible probability, blind spots
where the model is unsure about its predictions. Furthermore,
they arise by adding highly non-random noise to legitimate
samples, thus violating the implicit assumption of statistical
noise that is made during training. Khoury and Hadfield-Menell
(2018) relates adversarial examples to the high dimension of
the input space and the curse of dimensionality, which allows
constructing adversarial examples in many directions off the
manifold of proper input data. In Ilyas et al. (2019), the
existence of adversarial examples is ascribed to so-called non-
robust features in the training data, which would also provide
an explanation for their transferability property. By practical
experiments (Madry et al., 2018) demonstrate defenses from the
point of view of robust optimization that show comparatively
high robustness against strong adversarial attacks. Additionally
and in contrast to most other publications, theses defenses
provide some theoretical guarantee against a whole range of both
static and adaptive attacks.

Figure 6 illustrates the problem of adversarial examples
and its root cause and presents an analogy from human
psychophysics. Decision-making in humans (Loftus, 2005) as
well as in AI systems (Jakubovitz et al., 2019) is error-prone since
theoretically ideal boundaries for decision-making (task decision
boundaries) are in practice instantiated by approximations
(model decision boundaries). Models are trained using data
(AI and humans) and evolutionary processes (humans). In the
trained model, small changes in either sensory input or other
boundary conditions (e.g., internal state) may lead to state
changes whereby decision boundaries are crossed in state space,
i.e., small changes in input (e.g., sensory noise) may lead to large
output changes (here a different output class). Model and task
decision, therefore, may not always match. Adversarial examples

are found in those regions in input space where task and model
decision boundaries differ, as depicted in Figure 6:

• Part A shows an example for human perception of ambiguous
images, namely the so-called Necker cube: sensory input
(image, viewpoint, lightening, . . . ), internal states (genetics,
previous experience, alertness, mood, . . . ) and chance (e.g.,
sensory noise) determine in which of two possible ways
the Necker cube is perceived: (top) either the square on
the left/top side or the square on the right/bottom side is
perceived as the front surface of the cube, and this perception
may spontaneously switch from one to the other (bistability).
Besides internal human states that influence which of the two
perceptions is more likely to occur (Ward and Scholl, 2015),
the input image may be slightly manipulated such that either
the left/top square (left) or the right/bottom square (right) is
perceived as the front surface of the cube.

• Part B shows how all these effects are also observed in
AI systems. This figure illustrates adversarial examples for
a simplified two-dimensional projection of an input space
with three decision boundaries forming the model decision
boundary of class A (yellow) modeling the task decision
boundary (blue): small modifications can shift (red arrows)
input data from one model decision class to another, with
(example on boundary 2 on the left) and without (example on
boundary 3 on the right) changing the task decision class.Most
data are far enough from the model decision boundaries to
exhibit a certain amount of robustness (example on boundary
1 on the bottom). It is important to note that this illustration,
depicting a two-dimensional projection of input space, does
not reflect realistic systems with high-dimensional input space.
In those systems, adversarial examples may almost always be
found within a small distance from the point of departure
(Szegedy et al., 2014; Goodfellow et al., 2015; Khoury and
Hadfield-Menell, 2018). These adversarial examples rarely
occur by pure chance but attackers may efficiently search
for them.

A B

FIGURE 6 | Error-prone decision-making in humans (A) and AI systems (B) as exemplified by the Necker cube as an example of an ambiguous image (A) and a

schematic depiction of adversarial examples in a 2D-projection of state space (B). Task and model decision boundaries do not perfectly match and small changes in

input may result in large changes in output. More details are given in the main text.
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3.2. Black-Box Property and Lack of
Interpretability
A major drawback of complex AI models like deep neural
networks is their shortcoming in terms of interpretability and
explainability (Rudin, 2019). Traditional computer programs
solving a task are comprehensible and transparent at least
to sufficiently knowledgeable programmers. Due to their huge
parameter space as discussed in subsection 3.1, complex AI
systems do not possess this property. In their case, a programmer
can still understand the boundary conditions and the approach
to the problem; however, it is infeasible for a human to directly
convert the internal representation of a deep neural network to
terms allowing him to understand how it operates. This is very
dangerous from the perspective of IT security, since it means
attacks can essentially only be detected from incorrect behavior
of the model (which may in itself be hard to notice), but not
by inspecting the model itself. In particular, after training is
completed, the model’s lack of transparency makes it very hard
to detect poisoning and backdooring attacks on the training data.
For this reason, such attacks should be addressed and mitigated
by thorough documentation of the training and evaluation
process and by protecting the integrity of intermediate results
or alternatively by using training and test data that have been
certified by a trustworthy party.

A straightforward solution to the black-box property of
complex AI models would be to use a model which is inherently
easier to interpret for a human, e.g., a decision tree or a
rule list (Molnar, 2020). When considering applications based
on tabular data, for instance in health care or finance, one
finds that decision trees or rule lists even perform better than
complex cAI models in most cases (Angelino et al., 2018;
Rudin, 2019; Lundberg et al., 2020), besides exhibiting superior
interpretability. However, in applications from computer vision,
which are the focus of this paper, or speech recognition, sAI
models cannot compete with complex models like deep neural
networks, which are unfortunately very hard to interpret. For
these applications, there is hence a trade-off between model
interpretability and performance. A general rule of thumb for
tackling the issue of interpretability would still consist in using
the least complex model which is capable of solving a given
problem sufficiently well. Another approach for gaining more
insight into the operation of a black-box model is to use XAI
methods that essentially aim to provide their users with a human-
interpretable version of the model’s internal representation. This
is an active field of research, where many methods have been
proposed in recent years (Gilpin et al., 2018; Samek et al., 2019;
Molnar, 2020). Yet another approach is to use—where available—
AI-systems which have been mathematically proven to be robust
against attacks under the boundary conditions that apply for the
specific use case (Huang et al., 2017; Katz et al., 2017; Gehr et al.,
2018; Wong et al., 2018; Wong and Kolter, 2018; Singh et al.,
2019). For more details, the reader is referred to subsection 4.3.

3.3. Dependence of Performance and
Security on Training Data
The accuracy and robustness of an AI model is highly dependent
on the quality and quantity of the training data (Zhu et al.,

2016; Sun et al., 2017; Chung et al., 2018). In particular, the
model can only achieve high overall performance if the training
data are unbiased (Juba and Le, 2019; Kim et al., 2019). Despite
their name, AI models currently used are not “intelligent,”
and hence they can only learn correlations from data but
cannot by themselves differentiate spurious correlations from
true causalities.

For economic reasons, it is quite common to outsource part of
the supply chain of an AI model and obtain data and models for
further training from sources which may not be trustworthy (cf.
Figure 7). On the one hand, for lack of computational resources
and professional expertise, developers of AI systems often use
pre-trained networks provided by large international companies
or even perform the whole training process in an environment
not under their control. On the other hand, due to the efforts
required in terms of funds and personnel for collecting training
data from scratch as well as due to local data protection laws
(e.g., the GDPR in the European Union), they often obtain
whole data sets in other countries. This does not only apply
to data sets containing real data, but also to data which are
synthetically created (Gohorbani et al., 2019) in order to save
costs. Besides synthetic data created from scratch, this especially
concerns data obtained by augmenting an original data set, e.g.,
using transformations under which the model’s output should
remain invariant.

Both these facts are problematic in terms of IT security, since
they carry the risk of dealing with biased or poor-quality data and
of falling prey to poisoning attacks (cf. section 2), which are very
hard to detect afterwards. The safest way to avoid these issues is
not to rely on data or models furnished by other parties. If this is
infeasible, at least a thorough documentation and cryptographic
mechanisms for protecting the integrity and authenticity of such
data andmodels should be applied throughout their whole supply
chain (cf. subsection 4.2).

4. MITIGATION OF VULNERABILITIES OF
AI SYSTEMS

4.1. Assessment of Attacks
A necessary condition for properly reasoning about attacks is
to classify them using high-level criteria. The result of this
classification will facilitate a discussion about defenses which are
feasible and necessary. Such a classification is often referred to as
a threat model or attacker model (Papernot et al., 2016d; Biggio
and Roli, 2018).

An important criterion to consider is the goal of the attack.
First, one needs to establish which security goal is affected. As
already noted in section 1, attackers can target either integrity
(by having the system make wrong predictions on specific input
data), availability (by hindering legitimate users from properly
using the system) or confidentiality (by extracting information
without proper authorization). Besides, the scope of the attack
may vary. An attacker may mount a targeted attack, which affects
only certain data samples, or an indiscriminate one. In addition,
the attacker may induce a specific or a general error. When
considering AI classifiers, for instance, a specific error means
that a sample is labeled as belonging to a target class of the
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FIGURE 7 | Summary of possible attacks (red) on AI systems and defenses (blue) specific to AI systems depicted along the AI life cycle. Defenses not specific to AI

systems, e.g., background checks of developers, hardware access control etc. are not shown here and should be adopted from classical IT security. Multiple AI

training sessions with different data sets indicate the risk associated with pre-trained networks and externally acquired data.

attacker’s choosing, whereas a general error only requires any
incorrect label to be assigned to the sample. Furthermore, the
ultimate objective of the attack must be considered. For example,
this can be the unauthorized use of a passport (when attacking
biometric authentication) or recognizing a wrong traffic sign (in
autonomous driving applications). In order to properly assess the
attack, it is necessary to measure its real-world impact. For lack of
more precise metrics commonly agreed upon, as a first step one
might resort to a general scale assessing the attack as having low,
medium or high impact.

The knowledge needed to carry out an attack is another
criterion to consider. As described in subsection 2.3, an attacker
has full knowledge of themodel and the data sets in the white-box
case. In this scenario, the attacker is strongest, and an analysis
assuming white-box access thus gives a worst-case estimate for
security. As noted in Carlini et al. (2019), when performing
such a white-box analysis, for the correct assessment of the
vulnerabilities it is of paramount importance to use additional
tests for checking whether the white-box attacks in question have
been applied correctly, sincemistakes in applying them have been
observed many times and might yield wrong results.

In the case of a gray-box attack, conducting an analysis
requires making precise assumptions on which information is
assumed to be known to the attacker, and which is secret. Carlini
et al. (2019) suggests that, in the same way as with cryptographic
schemes, as little information as possible should be assumed to be
secret when assessing the security of an AI system. For instance,
the type of defense used in the system should be assumed to be
known to the attacker.

The third criterion to be taken into account is the efficiency

of the attack, which influences the capabilities and resources an
attacker requires. We assume the cost of a successful attack to

be the most important proxy metric from the attacker’s point of
view. This helps in judging whether an attack is realistic in a real-
world setting. If an attacker is able to achieve his objective using
a completely different attack which does not directly target the
AI system and costs less, it seems highly probable a reasonable
attacker will prefer this alternative (cf. the concise discussion in
Gilmer et al., 2018). Possible alternatives may change over time
though, and if effective defenses against them are put into place,
the attacker will update his calculation and may likely turn to
attack forms he originally disregarded, e.g., attacks on the AI
system as discussed in this paper.

The cost of a successful attack is influenced by several factors.
First, the general effort and scope of a successful attack have a
direct influence. For instance, the fact whether manipulating only
a few samples is sufficient for mounting a successful poisoning
attack or whether many samples need to be affected can have a
strong impact on the required cost, especially when taking into
account additional measures for avoiding detection. Second, the
degree of automation of the attack determines howmuchmanual
work and manpower is required. Third, the fact whether an
attack requires physical presence or can be performed remotely
is likewise important. For instance, an attack which allows only a
low degree of automation and requires physical presence is much
more costly to mount and especially to scale. Fourth, attacking in
a real-world setting adds further complexity and might hence be
more expensive than an attack in a laboratory setting, where all
the side conditions are under control.

A fourth important criterion is the availability ofmitigations,
which may significantly increase the attacker’s cost. However,
mitigations must in turn be judged by the effort they require
for the defender, their efficiency and effectiveness. In particular,
non-adaptive defense mechanisms may provide a false sense of
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security, since an attacker who gains sufficient knowledge can
bypass them by modifying his attack appropriately. This is a
serious problem pointed out in many publications (cf. Athalye
et al., 2018a; Gilmer et al., 2018). As a rule, defense mechanisms
should therefore respect Kerckhoffs’s principle and must not rely
on security by obscurity.

4.2. General Measures
A lot of research has been done on how to mitigate attacks on
AI systems (Bethge, 2019; Carlini et al., 2019; Madry et al., 2019).
However, almost all the literature so far focuses on mitigations
inside the AI systems, neglecting other possible defensive
measures, and does not take into account the complete AI
life cycle when assessing attacks. Furthermore, although certain
defenses like some variants of adversarial training (Tramèr
et al., 2018; Salman et al., 2019) can increase robustness against
special threat models, there is, as of now, no general defense
mechanism which is applicable against all types of attacks. A
significant problem of most published defenses consists in their
lack of resilience against adaptive attackers (Carlini and Wagner,
2017a,b; Athalye et al., 2018a). As already stated, the defense
mechanisms used should be assumed to be public. The resistance
of a defense against attackers who adapt to it is hence extremely
important. In this section, we argue that a broader array of
measures need to be combined for increasing security, especially
if one intends to certify the safe and secure operation of an
AI system, as seems necessary in high-risk applications like
autonomous driving. An overview of defenses and attacks is
presented in Figure 7.

There is no compelling reason to focus solely on defending the
AI system itself without taking into account additional measures
which can hamper attacks by changing side conditions. This
observation does not by any means imply that defenses inside
the AI system are unimportant or not necessary but instead
emphasizes that they constitute a last line of defense, which
should be reinforced by other mechanisms.

Legal measures are most general. They cannot by themselves
prevent attacks, but may serve as a deterrent to a certain extent, if
properly implemented and enforced. Legal measures may include
the adoption of new laws and regulation or specifying how
existing laws apply to AI applications.

Organizational measures can influence the side conditions,
making them less advantageous for an attacker. For instance,
in biometric authentication systems at border control, a human
monitoring several systems at once and checking for unusual
behavior or appearance may prevent attacks which can fool the
AI system but are obvious to a human observer or can easily be
detected by him if he is properly trained in advance. Restricting
access to the development and training of AI systems for sensitive
use cases to personnel which has undergone a background
check is another example of an organizational measure. Yet
another example is properly checking the identity of key holders
when using a public key infrastructure (PKI) for protecting the
authenticity of data.

Technical measures outside the AI system can be applied
to increase IT security. The whole supply chain of collecting
and preprocessing data, aggregating and transmitting data sets,

pre-training models which are used as a basis for further
training, and the training procedure itself can be documented and
secured using classic cryptographic schemes like hash functions
and digital signatures to ensure integrity and authenticity (this
ultimately requires a PKI), preventing tampering in the process
and allowing reproducing results and tracing back problems
(Berghoff, 2020). Depending on the targeted level of security
and traceability, the information covered may include all the
training and test data, all AI models, all ML algorithms, a detailed
logging of the development process (e.g., hyperparameters set by
the developer, pseudo-random seeds, intermediate results) and
comments of the developers concisely explaining and justifying
each step in the development process. If the source of the data
used is itself trusted, such documentation and cryptographic
protection can later be validated to prove (with high probability)
that no data poisoning attacks have been carried out, provided the
validating party gets access to at least a sample of the original data
and can check the correctness of intermediate results. As a further
external technical measure, the AI system can be enhanced by
using additional information from other sources. For example, in
biometric authentication, biometric fakes can be detected using
additional sensors (Marcel et al., 2019).

In a somewhat similar vein, the redundant operation of

multiple AI systems running in parallel may serve to increase
robustness to attacks, while at the same time increasing the
robustness on benign data not seen during training. These
systems can be deployed in conjunction with each other
and compare and verify each other’s results, thus increasing
redundancy. The final result might be derived by a simple
majority vote (cf. Figure 7). Other strategies are conceivable
though. For instance, in safety-critical environments an alarm
could be triggered in case the final decision is not unanimous
and, if applicable, the system could be transferred to a safe fall-
back state pending closer inspection. Increasing the redundancy
of a technical system is a well-known approach for reducing
the probability of undesired behavior, whether due to benign
reasons or induced by an attacker. However, the transferability
property of adversarial examples (cf. subsection 2.5, Papernot
et al., 2016a) implies that attacks may continue to work even
in the presence of redundancy, although their probability of
success should at least slightly diminish. As a result, when
using redundancy, one should aim to use conceptually different
models and train them using different training sets that all stem
from the data distribution representing the problem at hand,
but have been sampled independently or at least exhibit only
small intersections. While this does not in principle resolve
the challenges posed by transferability, our intuition is that
it should help to further decrease an attacker’s probability
of success.

4.3. AI-Specific Measures
On the AI level, several measures can likewise be combined
and used in conjunction with the general countermeasures
presented above. First and foremost, appropriate state-of-the-
art defenses from the literature can be implemented according
to their security benefits and the application scenario. One
common approach for thwarting adversarial attacks is to make
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use of input compression (Dziugaite et al., 2016; Das et al.,
2017), which removes high-frequency components from input
data that are typical for adversarial examples. More prominent
still is a technique called adversarial training, which consists
in pre-computing adversarial examples using standard attack
algorithms and incorporating them into the training process of
the model, thus making it more robust and, in an ideal setting,
immune to such attacks. State-of-the-art adversarial training
methods may be identified using (Madry et al., 2018, 2019;
Bethge, 2019). In general, when dealing with countermeasures
against adversarial attacks, it is important to keep in mind
that many proposed defenses have been broken in the past
(Carlini and Wagner, 2017b; Athalye et al., 2018a), and that
even the best defenses available and combinations thereof Carlini
and Wagner (2017a) may not fully mitigate the problem of
adversarial attacks.

In terms of defenses against backdoor poisoning attacks

only a few promising proposals have been published in recent
years (Tran et al., 2018; Chen et al., 2019; Wang et al.,
2019). Their main idea lies in the creation of a method which
proposes possibly malicious data samples of the training set for
manual examination. Those methods use the fact that a neural
network trained on such a compromised data set learns the false
classification of backdoored samples as exceptions, which can
be detected from the internal representation of the network. It
needs to be kept in mind though that those defenses do not

provide any formal guarantees and might be circumvented by an
adaptive adversary.

As a first step, instead of preventing AI-specific attacks
altogether, reliably detecting them might be a somewhat easier
and hence more realistic task (Carlini and Wagner, 2017a). In
case an attack is detected, the system might yield a special output
corresponding to this situation, trigger an alarm and forward the
apparently malicious input to another IT system or a human in
the loop for further inspection. It depends on the application in
question whether this approach is feasible. For instance, asking
a human for feedback is incompatible by definition with fully
autonomous driving at SAE level 5 (ORAD Committee, 2018).

A different approach lies in using methods from the area
of explainable AI (XAI) to better understand the underlying
reasons for the decisions which an AI system takes (cf. Figure 8).
At the least, such methods may help to detect potential
vulnerabilities and to develop more targeted defenses. One
example is provided by Lapuschkin et al. (2019), which suggests
a more diligent preprocessing of data for preventing the AI
system from learning spurious correlations, which can easily be
attacked. In principle, one can also hope that XAI methods will
allow reasoning about the correctness of AI decisions under a
certain range of circumstances. The field of XAI as focused on
(deep) neural networks is quite young, and research has only
started around 2015, although the general question of explaining
decisions of AI systems dates back about 50 years (Samek et al.,

FIGURE 8 | Schematic illustration of the application of explainable AI (XAI) methods to deduce (A) local and (B) global model behavior of an AI system. (A) shows how

heat maps are generated after labels were obtained for a specific input image, in this case using LRP (Samek et al., 2016), which assigns each input pixel a relative

contribution to the output decision (green colors indicate lowest relevance, red colors highest relevance). (B) illustrates how many local model behavior explanations

are combined to explain global model behavior, in this case using spectral analysis (cf. Lapuschkin et al., 2019). Here multiple topographically distinct clusters for

individual labels shown in a 2D projection of input space indicate some kind of problem: the small cluster for speed limit 100 represents the backdooring attack using

modified stop signs (cf. Figure 4) and the small cluster for the yield sign represents the Clever Hans effect illustrated in detail in (C), where specific image tags (here

“@yieldphoto”) correlate with specific input classes (here the yield sign) and the AI system focuses on these spurious correlations instead of causal correlations. Upon

swapping the input data set (not containing any more spurious correlations of this kind), the AI model might show erroneous behavior.
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2019, pp. 41–49). So far, it seems doubtful there will be a single
method which will fit in every case. Rather, different conditions
will require different approaches. On the one hand, the high-level
use case has a strong impact on the applicable methods: When
making predictions from structured data, probabilistic methods
are considered promising (Molnar, 2020), whereas applications
from computer vision rely on more advanced methods like layer-
wise relevance propagation (LRP) (Bach et al., 2015; Samek
et al., 2016; Montavon et al., 2017; Lapuschkin et al., 2019).
On the other hand, some methods provide global explanations,
while others explain individual (local) decisions. It should be
noted that by using principles similar to adversarial examples,
current XAI methods can themselves be efficiently attacked.
Such attacks may either be performed as an enhancement to
adversarial examples targeting the model (Zhang et al., 2018) or
by completely altering the explanations provided while leaving
model output unchanged (Dombrowski et al., 2019). Based on
theoretical and practical observations, both Zhang et al. (2018)
and Dombrowski et al. (2019) suggest countermeasures for
thwarting the respective attacks.

A third line of research linked to both other approaches is
concerned with verifying and proving the safety and security
of AI systems. Owing to the much greater complexity of this
problem, results in this area, especially practically usable ones,
are scarce (Huang et al., 2017; Katz et al., 2017; Gehr et al.,
2018; Wong et al., 2018; Wong and Kolter, 2018; Singh et al.,
2019). A general idea for harnessing the potential of XAI and
verification methods may be applied, provided one manages
to make these methods work on moderately small models. In
this case, it might be possible to modularize the AI system
in question so that core functions are mapped to small AI
models (Mascharka et al., 2018), which can then be checked and
verified. From the perspective of data protection, this approach
has the additional advantage that the use of specific data may
be restricted to the training of specific modules. In contrast
to monolithic models, this allows unlearning specific data by
replacing the corresponding modules (Bourtoule et al., 2019).

5. CONCLUSION AND OUTLOOK

The life cycle of AI systems can give rise to malfunctions
and is susceptible to targeted attacks at different levels. When
facing naturally occurring circumstances and benign failures,
i.e., in terms of safety, well-trained AI systems display robust
performance in many cases. In practice, they may still show
highly undesired behavior, as exemplified by several incidents
involving Tesla cars (Wikipedia Contributors, 2020). The main
problem in this respect is insufficient training data. The black-
box property of the systems aggravates this issue, in particular
when it comes to gaining user trust or establishing guarantees on
correct behavior of the system under a range of circumstances.

The situation is much more problematic though when it
comes to the robustness to attacks exhibited by the systems.
Whereas a lot of attacks can be combated using traditional
measures of IT security, the AI-specific vulnerabilities to
poisoning and evasion attacks can have grave consequences and

do not yet admit reliable mitigations. Considerable effort has
been put into researching AI-specific vulnerabilities, yet more
is needed, since defenses still need to become more resilient to
attackers if they are to be used in safety-critical applications. In
order to achieve this goal, it seems furthermore indispensable to
combine defense measures at different levels and not only focus
on the internals of the AI system.

Additional open questions concern the area of XAI, which
is quite recent with respect to complex AI systems. The
capabilities and limitations of existing methods need to be better
understood, and reliable and sensible benchmarks need to be
constructed to compare them (Osman et al., 2020). The topic
of formal verification of the functionality of an AI system is
an important enhancement that should further be studied. A
general approach for obtaining better results from XAI and
verification methods is to reduce complexity in the models to be
analyzed. We argue that for safety-critical applications the size
of AI systems used for certain tasks should be minimized subject
to the desired performance. If possible, one might also envision
using a modular system containing small modules, which lend
themselves more easily to analysis. A thorough evaluation using
suitable metrics should be considered a prerequisite for the
deployment of any IT system and, therefore, of any AI system.

Thinking ahead, the issue of AI systems which are
continuously being trained using fresh data (called continual
learning, Parisi et al., 2019) also needs to be considered. This
approach poses at least two difficulties as compared to the more
static life cycle considered in this article. On the one hand,
depending on how the training is done, an attacker might have
a much better opportunity for poisoning training data. On
the other hand, results on robustness, resilience to attacks or
correctness guarantees will only be valid for a certain version of
a model and may quickly become obsolete. This might be tackled
by using regular checkpoints and repeating the countermeasures
and evaluations, at potentially high costs.

Considering the current state of the art in the field of XAI
and verification, it is unclear whether it will ever be possible
to formally certify the correct operation of an arbitrary AI
system and construct a system which is immune to the AI-
specific attacks presented in this article. It is conceivable that
both certification results and defenses will continue to only yield
probabilistic guarantees on the overall robustness and correct
operation of the system. If this assumption turns out true for the
foreseeable future, its implications for safety-critical applications
of AI systems need to be carefully considered and discussed
without bias. For instance, it is important to discuss which
level of residual risk, if any, one might be willing to accept in
return for possible benefits of AI over traditional solutions, and
in what way the conformance to a risk level might be tested
and confirmed. For instance, humans are required to pass a
driving test before obtaining their driver’s license and being
allowed to drive on their own. While a human having passed a
driving test is not guaranteed to always respect the traffic rules,
to behave correctly and to not cause any harm to other traffic
participants, the test enforces a certain standard. In a similar vein,
one might imagine a special test to be passed by an AI system
for obtaining regulatory approval. In these cases the risks and
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benefits of using an AI system and the boundary conditions for
which the risk assessment is valid should be made transparent
to the user. However, the use of any IT system that cannot be
guaranteed to achieve the acceptable risk level as outlined above
could in extreme cases be banned for particularly safety-critical
applications. Specifically, such a ban could apply to pure AI
systems, if they fail to achieve such guarantees.
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